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Abstract

Robot systems in critical applications, such as those in
space and nuclear environments, must be able to operate
during component failure to complete important tasks.
One failure mode that has received little attention is the
failure of joint position sensors.  Current fault tolerant
designs require the addition of directly redundant
position sensors which can affect joint design.  The
proposed method uses joint torque sensors found in
most existing advanced robot designs along with easily
locatable, lightweight accelerometers to provide a joint
position sensor fault recovery mode.  This mode uses
the torque sensors along with a virtual passive control
law for stability and accelerometers for joint position
information.  Two methods for conversion from
Cartesian acceleration to joint position based on robot
kinematics, not integration, are presented.  The fault
tolerant control method was tested on several joints of a
laboratory  robot.  The controllers performed well with
noisy, biased data and a model with uncertain
parameters.

I. Introduction

Fault tolerant control in robot systems has been an active
research area in the past few years[1,2,3,4].  The research
has been driven by the need for robots to work reliably in
space and nuclear environments where human intervention
is difficult.  Joint position sensor fault tolerance is an
important characteristic of reliable robot systems that has
received little attention to date.

For a robot joint to be truly fault tolerant to position
sensor failure, it must be driven by a controller which
does not rely on position sensor feedback for stability.
Control of robotic systems has been a difficult problem
due to the nonlinearity of the system equations without
considering the complexity added by fault tolerance
requirements.  Techniques to control this nonlinear
system, such as feedback linearization[5], have been
popular in the robotic control literature for some time.
The main reason for the nonlinearity in the equations is
the need to calculate the dynamic effects on the
structure.  This calculation requires position feedback in
addition to a complex system model.  Controlling the
nonlinear plant based on the full dynamic equations is
not the only method for controlling a robot

manipulator.  If the joints have a torque sensor along
the drive axis, the problem can be reduced to
controlling the individual joint dynamics.  Work in
this area has been published recently[6,7].  These
methods use known, mostly linear, electric motor
driven joint models to control joint acceleration and
velocity.  However,  these methods still require
measurement of joint position and velocity to compute
the control inputs.  A new controller [8] was developed
using virtual passive design techniques, joint torque
sensor feedback, and simple joint model which is
Lyaponov stable without joint position sensor feedback.

Although a controller that is stable without position
feedback is available, position feedback is still required to
servo to a position.  The primary method used in reliable
robot design is the inclusion of redundant position
sensors.  The redundant sensor’s output is compared with
the primary sensor’s output to detect failures and, during
failure, is used instead of the primary sensor’s output.
The addition of the redundant sensor usually affects joint
design.  Some other fault tolerant design techniques use
end effector  tracking or kinematic redundancy to continue
operation after a sensor failure.  The success of these
techniques is task and/or environment dependent.  A
method that is less task dependent and is integrable into
existing robot designs would be desirable.

Utilizing double integration, perfect accelerometers would
be ideal for this purpose.  Current accelerometer designs
are small, require little power, and are easily incorporated
into existing robot designs.  Unfortunately, sensor effects
such as noise and bias make the double integration based
technique impractical.  A method to obtain joint position
from Cartesian accelerometers without integration [9] was
recently developed to solve this problem.  While effective,
the number of accelerometers required by this method to
provide fault tolerance to all robot joints can be
impractical.  A system wide method was developed in
[10] to reduce the number for accelerometers required.

This paper will review both the torque sensor based
joint controller and the joint specific and system wide
accelerometer based position determination techniques.
The incorporation of these techniques into a fault
tolerant control systems will be discussed.  The new
control systems were implemented on a laboratory
manipulator.  The results of experiments conducted to



show the performance of the resulting control systems
will be presented.

II. Virtual passive joint control

The virtual passive joint torque control technique is
based on a combination of the torque compensation
method from Kosuge[5] and the virtual passive control
design technique from Juang[11].  The controller design
is detailed in Aldridge[8].  Figure 1 shows an electric
motor driven, direct drive joint for which the controller
will be designed.  Equation (1) describes the resulting
system.
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Figure 1: Diagram of proposed direct drive joint

τ θ τ θi i i si i i im v f= + + +˙̇ ˙ (1)

In Eq. (1), mi is the rotor inertia, vi is the viscous
friction, τi is the input torque, τsi is the sensed torque,
and fi is the nonlinear dynamic term resulting from
moving the previous i-1 links.  Note that all terms
relating to link and load dynamic and static torques are
grouped into the τsi term.  As a result, these torques are
sensed, not calculated.  For reasonable robot motions,
the fi term is small, is zero for the first link assuming a
fixed base, and decreases with system kinetic energy.
As a result, the fi term can be treated as a disturbance
and ignored.  Equation (2) defines a new quantity, τxi,
ignoring the fi term.

τ θ θxi i i i i im v u= − − +˙̇ ˙ (2)

The controller design technique used is similar to the
virtual passive control technique presented in Juang.
This technique is based on the concept that a
mechanical system can be represented by a second-order
system with inertia, damping, and stiffness related
parameters.  An active feedback controller can be
designed with its dynamics equivalent to a mechanical
system.  The resulting controller is,

H x H x H x g y uM c D c K c s˙̇ ˙ ( )+ + + = (3)

where ys  is the measured system output, g is a user
defined function, xc is the controller state vector of
dimension nc, and HM, HD, and HK are the controller

mass, damping, and stiffness matrices respectively.
These matrices are design parameters and can be chosen
to meet performance and stability requirements.  The
function g is an arbitrary function of the measured
system outputs, ys.  These outputs can be system states
or combinations of system states.

The torque controller using τxi will now be detailed.
Note that if fi is treated as a disturbance, τxi=τsi.  Let:

M diag m mrz p= ( ,..., )1 (4)
V diag v vp= ( ,..., )1 (5)
τ τ τx x xpdiag= ( ,..., )1 (6)
ui i= τ (7)

Using the virtual passive controller design technique, a
controller that satisfies the Lyaponov stability criteria is
given by,
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where Dc, Rτ, and Kc are design matrices.  The
restriction on these design matrices is that Dc and Rτ
must be a symmetric and positive-definite.  The
previous joint torque command, u′, is known and used
to calculate the current torque command.  Note that the
terms x xc c and ˙ are not the joint position and
velocity.  They are controller states used to satisfy the
stability condition.  As a result, this controller design
can dissipate joint kinetic energy without joint position
or velocity feedback.

The resulting controller has several important properties
for the fault tolerance application:
• It does not depend on joint position or velocity

feedback for stability
• It has tunable stiffness and damping terms
• It can act as an active joint brake by dissipating

energy
• Its stability is robust to modeling errors
• It compensates for link and load dynamic effects

allowing for reduced position controller gains

III. Joint specific accelerometer based position
sensor fault tolerance

Although the virtual passive joint controller does not
require position feedback for stability, position feedback
is required for position control.  In this paper that



feedback will be provided by Cartesian accelerometers.
The position determination method proposed, detailed
in Aldridge[9], requires two triaxial Cartesian
accelerometers to be attached to the link driven by the
joint whose position sensor is to be made fault tolerant.
The method also uses gravity or a known acceleration
field as a reference.  The accelerometers must be of the
type that can sense constant acceleration for acceptable
steady state performance.  Figure 2 shows a diagram of
the proposed accelerometer configuration.
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Figure 2: Proposed accelerometer configuration

The problem is to find a measurement which is directly
related to joint position.  If the acceleration of a point
on link i coincident with joint i+1 is known from
kinematics and measurements of the first i joint states,
in the special case where p is the zero vector the joint
position is given in Eq. 10.
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and αi is a known robot Devanit-Hartenberg parameter.

For any joint later in the kinematic chain to be made
fault tolerant, the acceleration ai

i
+
+

2
1  must be calculated.

The calculated position could be differentiated and used
along with the robot kinematics to calculate the
acceleration.  Due to the noisy nature of accelerometer
related signals, differentiation would be impractical.
However, given the joint position and the angular
velocity and acceleration of the ith link (calculated from
the first i measured joint states and kinematics), the
relationship between Cartesian acceleration and joint
velocity and acceleration is given by Eq. (11).
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with Ri
i+1 the rotation matrix from the ith frame to the

(i+1)th frame and ω i
i  the angular velocity of the ith link

in the ith frame.  The joint velocity and its square are
treated as independent variables to keep the equations
linear.  Although the rank of the solution is not
guaranteed, it can be solved by least squares.  A
simpler solution method involves solving a specific set
of equations derived from Eq. (11) depending on zeros
in the first column of the matrix in Eq. (11).  If rx=0 or
ry=0, the solution of the equations can be further
simplified because the solution for θ̇ i+1 is independent

from ˙̇θ i+1.

To solve Eq.(11), three cases must be considered.  Let ε
be some small number used to bypass small elements of
W that would be zero with perfect measurements.
Assuming either rx or ry is non-zero, the cases are:

1. |Ωxrx+Ωyry| > ε  ⇒   rank(W)=3
2. |Ω xrx+Ω yry| < ε  and (|Ω zrx| >ε or |Ω zry| >ε )    

⇒ rank(W)=2, equations are underdetermined
3. |Ω xrx+Ω yry| < ε and  |Ω zrx| <ε and |Ω zry| <ε

⇒ rank(W)=2, unique solution with no 
dependence on &θi +1

Solution techniques for the three cases in the general
situation of rx and ry ≠0 can be derived.  However, if the
system is designed such that rx or ry is zero, the solution
techniques become less complex.  The following
techniques can be used if rx=0, similar solutions can be
shown for ry=0.  For all cases of rx=0:
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Now, calculating &θi +1 for each case:

Case 1 for rx=0
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Case 2 for rx=0



In this case, there exists a quadratic equation in &θi +1 .
Solving with the standard quadratic solution:
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The proper root is selected by checking for consistency
with measured accelerations.  In contrast to case 3, there is
sufficient information in the measured accelerations to
determine the proper root.

Case 3 for rx=0
The solution for case 3 has no explicit dependence on
&θi +1 .  As a result, Eq. (15) must be used.
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The magnitude of &θi +1 is calculated via a square root.
Determination of the sign is problematic and will be
addressed later in this section.

Given the results of this calculation in either the general
or special case and known robot kinematics, the
solution for ai

i
+
+

2
1  can be found without differentiation.

For a real robot system, the assumption that p is zero is
not practical.  However, if p is non-zero, the position
solution is no longer independent of the velocity and
acceleration of the (i+1)th joint.  As presented, the joint
velocity and acceleration calculation is always
dependent on the joint position.  This problem can be
solved by introducing a correction term and iterating
between the joint position and the joint velocity and
acceleration solutions.  First, the previous joint values
are used to calculate the approximate angular velocity
and acceleration of the (i+1)th link as shown in Eq. (16)
and (17).
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These values are used in Eqs. (18) and (19) to produce
a new term, A1corr.
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A corr A Acorr1 1= − (19)

The A1corr term is used in the position solution
instead of A1 to obtain (θi+1)approx.  The (θi+1)approx term
is then used in Ri

i+1 to obtain a better solution for the
joint acceleration and velocity from the ai

i
+
+

2
1  solution.

The process is repeated by calculating a new Acorr
using the new approximation of the joint velocity and
acceleration instead of the value at the previous time.

For a physical robot system, this iteration converges
rapidly at reasonable sample rates.

If the equations in (11) satisfy only case 3, then the
equation for joint velocity is not solvable.  The square
of the joint velocity is solvable but determining the
direction of the velocity is problematic.  A method to
determine the sign of the velocity and enhance velocity
tracking performance  in the presence of accelerometer
noise in all cases is to implement a velocity observer.
The iterative, general position solution is modeled as a
linear system expressed by:
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The states are joint position θ̃ i+1 and velocity ˜̇θ i+1, the
inputs are calculated joint position θ i+1 and acceleration
˙̇θ i+1 from the iterative solution, and the output is the

filtered joint velocity, ˜̇θ i+1.  The Kk term  is used to
compensate for possible calculated acceleration bias due
to accelerometer sensor error.   Without the Kk term,
the system is an unstable double integrator and a bias
in the calculated acceleration can lead to unbounded
joint velocity.  The Kk  term can cause oscillations in
steady state.  The Kv term adds damping and can cancel
out the oscillations.

IV. System wide accelerometer based joint position
sensor fault tolerance

The system wide solution method is designed to
complement the joint specific method.  Where the joint
specific method gives an almost closed form solution
for joint position, the system wide method utilizes an
optimization algorithm to give an more flexible
solution with fewer accelerometers.

The system wide solution method is designed for an n
revolute joint, rigid link robot system with m triaxial
accelerometers mounted at various locations on the
robot.  A robot of this kinematic configuration is
governed by the following kinematic equations:
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where
ω i

i angular velocity of ith link in ith frame
ai

i acceleration of ith link in ith frame
Ri

i+1 rotation matrix from ith frame to (i+1)th  
frame

θi position of ith joint
    Ami

i
+
+
1
1 acceleration of accelerometer Ami+1 in the

(i+1)th frame
pmi+1 vector offset from joint i+1 to

accelerometer Ami
i
+
+
1
1

li vector offset from joint i to joint i+1 in the
frame i

    ẑ identity z vector [0 0 1]T

Each accelerometer contains information on the
position, velocity, and acceleration of joints preceding
the accelerometer in the kinematic chain.  End-effector
mounted accelerometers contain information about all
joints.  However, this information is mixed together in
a nonlinear fashion.  Except for accelerometers attached
to the first joint, there is no single acceleration that is,
in general, dependent on solely the position, velocity,
or acceleration of the ith joint.  Components of the
acceleration due to certain joints can dominate due to
kinematic configuration or trajectory.  For certain
configurations, the end-effector pose does not uniquely
determine the joint trajectory of the robot.  As a result,
only utilizing end-effector mounted accelerometers is
not sufficient for determining joint trajectories.
Distributing accelerometers along the arm in addition to
end-effector mounted accelerometers can help alleviate
these problems by obtaining information at points
closer to joints of interest.

The proposed solution method utilizes the distributed
Cartesian accelerometers in conjunction with any
working joint position sensors to recover a lost
position sensor.  This is done by calculating a knot
point, a point in the trajectory having position,
velocity, and acceleration, that will make the measured
accelerations match the accelerations determined by Eq.
(24).  In Eq. (25), the data from the operational joint
sensors is used to the extent possible, leaving only
terms involving the failed joints,

 Q A j bj j j( , & , && ) ,θ θ θ = ∈    (25)

where,
b is the set of failed joints
A is the vector of accelerometer

    measurements [ Am1
1 … Amm

m ]T

Q is a set of equations of type (24)
    corresponding to A

If r is the number of failed joints, then the resulting
system has 3m nonlinear equations (one equation per
axis, three axes per accelerometer) in 3r (position,
velocity, and acceleration of failed joints) unknowns.  If
this system is solvable, then the knot points for all r
joints can be determined and the joint positions
calculated.

A minimum criteria for solution is that there be at least
as many equations as unknowns, i.e. m r≥ .  If this
condition is not satisfied, then the minimum error
solution will be one using least squares.  Due to the
complexity of the equations, this condition is
optimistic.  As r approaches m, the system becomes
more ill-conditioned.  Choosing trajectories which
result in a condition number of the gradient of Q less
than some reasonable limit can help system solvability.

The system wide method, like the joint specific
method, relies on the existence of a known acceleration
field, usually gravity.  This field provides a known,
constant excitation to the system accelerometers.  The
solution method can be applied to systems without
such a field, but positions will be relative, not absolute,
and drift due to small errors is likely.  The
accelerometers must be of the instrument type that can
detect constant accelerations.

The system wide solution method requires a
computational technique for solving a system of
nonlinear equations. To be practical, the solution must
be calculable in real-time.  Real time in this sense
implies updates at a rate fast enough for stable joint
control if this method is used for fault recovery.  This
requirement limits the available solution techniques.
The solution technique must also be robust to sensor
noise and bias.  The convergence of the technique to a
good solution must be predictable.  Traditional
nonlinear solution techniques can be applied to this
problem. In the experimental setup detailed in section
VI, steepest descent [12] was used for its computational
efficiency.  Most computational methods require a
gradient for rapid convergence.  The gradient required
for this method can be computed numerically by finite
differences [13] or, more efficiently, by the recursive
algorithm shown in Appendix A.

V. Fault tolerant control system

Incorporating an accelerometer based position
determination method and the virtual passive based
torque controller results in a control system which is
capable of servoing to a position without joint position
sensor feedback.  An example of such a control system
using the joint specific method from section III can be
found in Fig. 3.  A similar version using the system
wide method from section IV is shown in Fig. 4.



The FDI, failure detection and identification
component, uses existing FDI techniques to determine
if a joint position sensor has failed and informs the
position solution which joint positions it must
calculate.  The position solution can be used on
unfailed joints as part of the FDI procedure to verify
joint position, velocity, and acceleration independently
of the joint sensors.  For the joint specific method
shown in Fig. 3, the output of accelerometer  A1 and
the difference between  A2 and A1, forming a relative
acceleration, are sent to lowpass filters to reduce noise.
A bias filter, an extremely lowpass filter, attempts to
remove steady state bias in the relative acceleration.
The position output of the position solution and the
observed velocity are merged with valid joint position
and velocity measurements from working joints for the
position controller, in this case a simple PD controller.
The position command torque and the sensed torque are
both filtered to remove noise and match phase shifts.
The position command torque is used to offset the
sensed torque to drive the robot in the desired direction.
The offset sensed toque is processed by the virtual
passive torque controller and the commanded torque for
the robot joint is calculated.

The control diagram for the system wide method in
Fig. 4 is similar with the exception that all system
accelerometers are used simultaneously without forming
relative accelerations.  Although the solution method is
capable of producing joint position, velocity, and

acceleration, to reduce computational complexity the
solution was formulated to only produce position and
acceleration.  The velocity is the most difficult value to
get accurate solutions for in the presence of
accelerometer error.  The control system used the
velocity observer described in section III to produce
calculated velocity.

Using the virtual passive torque controller in this
manner makes the use of accelerometer based position
measurements practical for closed loop control.  Since
the torque controller compensates for the dynamic and
static torques required to drive the links, the position
controller gains can be kept low.  These low gains are
important because, even filtered, the accelerometer based
positions are noisier than optical encoder or resolver
based measurements.  The passive controller gains can
also be adjusted to tolerate noisier inputs with the
tradeoff of lower position tracking performance.   The
calculated positions may have a bias associated with
them due to sensor error.  That position bias would
degrade the effectiveness of gravity compensation.  By
using the passive torque controller, a gravity
compensation algorithm is unnecessary.

VI. Experimental setup

Experiments to examine the performance of the
proposed method were conducted on a Robotics
Research  (RRC) 807i manipulator instrumented with
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accelerometers.  The RRC 807i is a 7 degree of
freedom, 0.8m long manipulator with a 10kg payload.

Joint specific setup

The accelerometers for the joint specific method were
installed on two joints of the robot in a pattern similar
to that in Fig. 2.  Figure 5 shows the robot and the
accelerometer mounts attached to the shoulder pitch and
elbow pitch joints.  A closer view of the elbow pitch
joint mounted accelerometers is shown in Fig. 6.  The
accelerometers used were ICSensors model 3140
piezoresistive accelerometers with internal amplification
and signal conditioning.  The accelerometers had a
maximum range of ±2g.  These piezoresistive
accelerometers were capable of sensing constant
accelerations, a necessary feature for the position
solution method.  Each accelerometer sensed
acceleration along a single axis.  Three accelerometers
were mounted orthogonally to form a single triaxial
accelerometer.  The accelerometers were chosen for their
ease to use and cost.  The accelerometer mounts were
designed to accommodate the accelerometers and use
existing mounting points on the robot.  The resulting
accelerometer  mounts are unsuitable for real world use
due to their size and location.  However, smaller
accelerometers which could be incorporated directly into
the robot structure are readily available.

Figure 5: RRC robot with accelerometer mounts

The joint specific based controller was implemented on
two 68040 based computers running on a VME
backplane.  The VME bus was connected to the RRC
robot controller via a bus to bus interface.  The interface
allowed the RRC robot to be controlled by reading and
writing to memory locations in the VME address space.
The first 68040 based computer, referred to as the
control processor, ran the interface code for the arm, arm
safety systems, and the virtual passive controller.  The
control processor generated new torque commands at
200Hz.  The second 68040, referred to as the
accelerometer processor, communicated with the arm
mounted accelerometers and ran the position solution
code.  The accelerometers were sampled at 100Hz and a

new position solution for two concurrent failures was
generated at 75Hz.

Figure 6: Elbow accelerometer mount

System wide setup

Figures 7 and 8 show the RRC manipulator and the
accelerometer mounts for the system wide solution
method.  Single triaxial accelerometers were attached to
the shoulder pitch, elbow roll, and elbow pitch joints,
joints 2,3, and 4 respectively.  This configuration was
the easiest to mount to the robot structure, not the
optimal accelerometer configuration.  Two triaxial
accelerometers were mounted to the end-effector.

A third processor was added to the controller
implemented for the joint specific method to handle the
increased computational complexity of the system wide
method.  The third processor, a 33Mhz 68040 called
the optimization processor, implemented the system
wide position determination algorithm.  The final
system was capable of producing joint positions for
three simultaneous failures at 60Hz.  While the
optimization processor was fully loaded at this rate, the
other processors were not heavily loaded for the system
wide experiment.

Figure 7: RRC arm with accelerometers, front view



Figure 8: RRC arm with accelerometers, side view

To implement a real-time system for the system wide
method on the computational resources available,
several compromises were required.

1. Although other solution techniques produce a more
robust system, steepest descent optimization was
used for its computational efficiency.

2. The gradient was not updated every control cycle
to lower computational complexity.  A full
gradient was available every four cycles.  The
modularity of the recursive method in Appendix A
made distributing the computation over several
cycles simple.

3. A new singular value decomposition (SVD)
required by the steepest descent method (due to the
variable rank of the gradient) was calculated the
cycle after a new gradient was completed.  The
results of the last SVD were used with a current
function calculation and the measured acceleration
to find the next position solution using the steepest
descent algorithm.

Setup notes common to both methods

In instrumenting the robot, electromagnetic noise from
the robot and robot controller was a significant
problem.  The final electrical configuration involved
using differential accelerometer outputs and differential
A/D conversion.  Each side of the differential signal was
filtered using a 40Hz analog lowpass filter for noise
reduction and anti-aliasing.  The bus-to-bus interface
contaminated the local ground interfering with the A/D
conversion.  As a result, the analog lowpass filter was
aided by a 5Hz digital lowpass filter to help reduce
residual noise.  With the existing system noise, the
internal accelerometer amplification to 1V/G was
essential.  If signal quality was improved, less
restrictive lowpass filters could be used improving
dynamic performance.

The RRC robot was commanded in torque mode.  In
this mode, the robot controller uses a basic torque
controller to overcome joint effects.  Its goal is to make
the harmonic gear driven joints perform like direct drive
joints.  The resulting system does reduce geartrain
effects but does not eliminate the effects.  The virtual
passive controller must handle any remaining geartrain
friction, hysteresis, or backlash.  Although the model
presented in section II was direct drive, the controller
can be used on gear driven joints if the effects geartrain
friction and the gear ratio are considered and nonlinear
geartrain effects, such as backlash, are minimized.

The motor parameters required by the controller were
not available from the robot manufacturer.  Identifying
the parameters of motors installed in the robot proved
difficult due to the parameters small size and the
inability to bypass the low level torque controller.  As
a result, qualitative data was used to estimate the
parameters and the gains chosen to produce the required
performance.  The resulting performance with
substantial modeling errors shows the stability
robustness of the controller.

A simple automatic calibration system was
implemented for the accelerometers using linear
regression.  This algorithm attempted to identify the
linear parameters to convert volts to m/s2.  These
parameters changed with temperature and other factors.
Each accelerometer had a slightly different dynamic
response.  These responses resulted in a variable bias in
the sensed relative acceleration.  For the joint specific
method, this bias was corrected in steady state by the
bias filter but did affect the calculated measurements.
Although no relative accelerations were used, the
difference in accelerometer dynamic response degraded
the system wide method’s dynamic response.

VII. Experimental results

Before presenting the experimental results, it should be
noted that this control method is proposed as a backup
method.  The position response using accelerometer
feedback cannot be expected to be as accurate as that of a
controller utilizing optical encoder or resolver position
feedback.  The goal of these experiments was to show
stable performance with position tracking acceptable for
continued operation during failure.

Joint specific technique

Figures 9 and 10 show the position tracking response of
the system with both the shoulder pitch and elbow
pitch joint position sensors failed.  Although the RRC
robot also provides velocity feedback, this feedback was
also considered failed.  The joint position data was
collected for comparison.  The robot was commanded
along a trajectory from [0 -π/2 -π -π/2 0 0 0], the Home



position, to [0.5 -1.27 -3.5 -1.27 0 0 0] in 1.5 seconds.
The two failure case is considered to show how the
calculated results for the shoulder pitch joint affect the
elbow pitch calculation.
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Figure 9: Position response of shoulder pitch joint to
trajectory ending at [0.5 -1.27 -3.5 -1.27]
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Figure 10: Position response of elbow pitch joint to
trajectory ending at [0.5 -1.27 -3.5 -1.27]

As discussed earlier, failures which occur before the
joint in question in the kinematic chain will affect the
position calculations for the joint.  However, joints
following that joint will not.  This property explains
why the wrist joints were not moved in this
experiment.  The shoulder roll and elbow roll joints
were not considered failed in this experiment and were
actuated to impart variable dynamic effects on the failed
joints making the experiment more interesting.

The shoulder pitch response was better than the elbow
pitch response because it sees fewer dynamic effects
than the elbow pitch joint.  The bias in the steady state
response of the elbow pitch joint is due to low position
gains.  It should be noted that although the actual
position did not track the commanded in steady state,
the calculated position did track the actual.  The

damping of the virtual passive controller contributes to
the smooth position tracking response.

Figures 11 and 12 show the response of moving from
Home to [1 -1 -4 -1] in 1.5 seconds.
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Figure 11: Position response of shoulder pitch joint to
trajectory ending at [1 -1 -4 -1]
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Figure 12: Position response of elbow pitch joint to
trajectory ending at [1 -1 -4 -1]

This trajectory is faster than the previous trajectory.  As
a result, the dynamic effects are more intense and it is
more difficult for the PD position controller to start and
stop the trajectory as commanded.  The faster trajectory
also shows the effect of the delay between actual and
calculated position.  This delay is caused by filter and
internal communication delays.  This combination of
effects results in a substantial overshoot in the shoulder
pitch response.  This overshoot can be reduced at the
cost of poorer tracking of slower trajectories.  This is
function of PD controllers in general but is worsened by
the position calculation delay.  The steady state error
between calculated and actual position is due to
calibration error.  The automatic calibration algorithm
was optimized for positions significantly far away from
the final configuration in this trajectory.



System wide technique

The most interesting failure considered using the
system wide method involved three simultaneous
position sensor failures.  Several sets of failed joints
were successfully controlled with the same
accelerometer configuration.  The representative
position response is shown in Figs. 13-15.  The
commanded trajectory ran from [0 -π/2 -π -π/2 0 0 0] to
[0.5 -1.27 -3.5 -1.27 0.3 -0.5 -0.5] in 1.5 seconds.
The position sensors for the elbow pitch, wrist pitch,
and toolplate roll joints were failed in this case.
Different  failure sets produced similar results.
Lowering the number of simultaneous failures improved
results.
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Figure 13: Position response of elbow pitch joint
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Figure 14: Position response of wrist pitch joint
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Figure 15: Position response of toolplate roll joint

Similarly to the joint specific method, as the speed of
the trajectories is increased, the dynamic effects are more
intense and it is more difficult for the PD position
controller to start and stop the trajectory as
commanded.  Figure 16 shows the response of the
elbow pitch joint along a trajectory faster than that
shown in Fig. 13.
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Figure 16: Position response of elbow pitch joint

General notes

The trajectories shown are faster than would reasonably
be expected for a robot with failed primary systems.
They are shown to illustrate the stability and tracking
performance in extreme conditions.  For real use, the
position gains would be tuned for better tracking at low
speeds and the maximum velocity commands limited.
As part of a system with a slow end-effector feedback
capability to remove small position bias, such as a
teleoperated system, the ability to stably continue
operation during failure would be more advantageous
than improved high-speed operation.

The main problem encountered in this experiment with
the accelerometer based position determination method



was the signal to noise ratio in certain robot and sensor
configurations.  In some configurations, the
accelerometer axes required to solve for position, not
velocity or acceleration, were nearly parallel to gravity.
In these configurations, the signal to noise ratio is low
and the resulting position calculation suffers.  This
problem could be solved by choosing trajectories to
avoid these known configurations or by better sensor
placement.

Another advantage of the proposed control system is
that little reconfiguration is required to transition from
working to failed states.  The performance of the elbow
pitch joint with encoder feedback along the same
trajectory as shown in Fig. 16 is shown in Fig. 17.
This performance is similar to the RRC controller’s
position control mode.  This performance is obtained
using the low position gains for failed operation.  With
these gains, to change from failed to unfailed operation,
the position feedback source for the position controller
is the only change necessary.  The virtual passive
torque controller will damp out control error due to a
small discontinuity in position feedback during
switching.  If additional time is required to initialize
the fault tolerant components, simply zero position
controller output and the virtual passive controller will
attempt to slow the joint to a stop.
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Figure 17: Position response of elbow pitch joint using
passive controller with low gains

If the designer wishes to exploit the performance
enhancing capabilities of the control system, simply
raising the position gains leads to the response in Fig.
18.  With these gains the position controller can
overcome the residual stiffness and damping on the
virtual passive controller which helps during failed
conditions but reduces position tracking performance.
The system still benefits from sensing static and
dynamic loads.  As a result, the system will maintain
similar tracking in all loading conditions before actuator
saturation.  To revert to failed operation, the position
gains must be lowered.  However, the virtual passive

torque controller will mask most of the discontinuity of
the change.  The virtual passive controller gains were
constant for all experiments in this paper.
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Figure 18: Position response of elbow pitch joint using
passive controller with high gains

VIII. Comparison on position determination
methods

Both position determination methods summarized here
have specific strengths and weaknesses.  The joint
specific method only provides fault tolerance to the
joint which drives the link to which the accelerometers
are attached.  If only one or two joints in the robot
systems are required to be fault tolerant, then the joint
specific method is ideal.  It will provide position
feedback  in a predictable, computationally simple
manner.

The cumulative errors inherent to both methods make
continued operation with more than three simultaneous
failures impractical.  The main advantage to using the
system wide methods is not its theoretical ability to
handle more simultaneous failures with fewer
accelerometers than the joint specific method.  The
main advantage of the system wide method is that it
can provide fault tolerance to many sets of different joint
failures.  The same set of accelerometers can provide
fault tolerance an elbow joint, a wrist joint, or both.
This flexibility allows the system designer to provide
system wide fault tolerance with a reasonable number of
accelerometers.

The flexibility of the system wide methods comes at a
significant cost.  The optimization method required by
the system wide method is computationally intensive.
In addition, the solvability of the system wide method
depends on the joints that are failed, the trajectory, and
the placement of the accelerometers.  The solvability of
the failed system along a trajectory must be checked
before the robot command is given or the robot can
become unstable.  A method involving checking the



singular values of the determinant of the gradient Q is
described in [10].

A more complete discussion of the torque controller and
both position determination methods can be found in
[14].

IX. Conclusions

This paper has presented a method for continuing
operation during the failure of a joint position sensor.
The method can be retrofitted into current advanced
robot designs, is internal to the robot, and is suitable
for long term operation in unstructured environments.
The proposed system includes a virtual passive torque
controller which does not rely on position feedback for
stability and one of two accelerometer based position
determination method which do not use integration to
obtain position.  Controller designs using both
position determination methods were described.  The
proposed controllers were implemented on a robot arm
and experimental results presented.  The results show
stable performance with reasonable tracking during
multiple simultaneous joint failures even along
trajectories which are more difficult than would be
expected of a robot with failed primary systems.
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Appendix A: Gradient calculation

Most nonlinear solution methods require a function
gradient for rapid convergence.   The closed-form
solution for the gradient of an n link manipulator
becomes more complex quickly as n grows.  The
gradient could be computed numerically using finite
differences[13].  Finite differences are not as accurate as a
closed-form solution.  The approach taken here is to
calculate the gradient recursively.  The system
equations are designed to be calculated recursively, so
the proper application of partial derivatives and the
chain rule will lead to the desired outcome.  The
desired gradient has the form:
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For simplicity, the measurement Ami is always in the
ith frame.  Now,
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The partial derivative will be zero for all quantities of
joint k where k>i+1.  This a consequence of the later
joints not affecting the previous links.

Equations (A2),(A3),and (A4) are not recursive
themselves, but the equations for the partials they
depend on are recursive.  The equations require that
Eqs. (17) through (19) be calculated for all n links to
determine the angular velocities, angular accelerations,
and Cartesian accelerations.  The partial derivatives can
then be calculated in the following manner:
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is the derivative of Ri
i+1 with respect to θi+1.

Using Eqs. (A1) through (A14), the elements of the
gradient can be calculated.  These equations have been
verified against numerically calculated gradients of Q.


